
Page 1 of 16

Page 2 of 16

Table of Contents
Prologue .. 3
Unresolved and Partially Resolved Findings .. 6

Yellow flag: Task Queue interactions .. 7
Yellow flag: Deprecated code .. 9
Yellow flag: Collection of minor code improvements.. 10
Yellow flag: Outdated Java version .. 13
Yellow flag: Replace custom code with libraries ... 14
Yellow flag: Shellcheck .. 15
Yellow flag: Thread Safety issues ... 17

Page 3 of 16

Prologue
This report is designated for external distribution, in accordance with the disclaimer below.

Disclaimer

This report is authorized for external distribution. This report is presented with full warranty and
guarantee.

This report touches aspects of both the code itself and the architecture. Information for the
architecture is gleaned from the whitepaper, website, and discussions with Swirlds members.

This report is a copy of a work in progress. It lists the most salient concerns that have so far
become apparent to FP Complete after a full inspection of the engineering work. The inspection
is done, but further concerns are likely to arise. Corrections, such as the cancellation of
incorrectly reported issues, may also arise. For the inspection done, FP Complete gives full
guarantee to business decision or other decision based on this report.

This report focuses on the full services and technical implementation as provided by the project’s
implementors, based on information provided by them, and is also meant to assess the concept,
mathematical validity, or business validity of the project. This report also gives full assessment of
the implementation of the project regarding financial viability, and suitability of the project.

This assessment when complete will be described as an “audit,” FP Complete has been given
access to and reviewed all aspects of the project and the engineering decision process underlying
all the work. This report may include references to problems that do not in fact exist. Meanwhile,
the work referenced may or may not contain undetected or unreported problems. FP Complete
has had independent access to all the relevant materials.

Some technical decisions in the engineering work were made due to historic reasons, time
constraints, budget constraints, or other constraints. Therefore, the presence of a concern or
“flag” in this report does not imply improper conduct or lack of skill by the implementer or
manager or any party.

NO ATTEMPT IS MADE OR IMPLIED TO JUDGE ANY PERSON, TEAM, COMPANY, OR OTHER PARTY.

Page 4 of 16

Source Material

For this report, the FP Complete team has reviewed the Seedvests platform and Seedvests
network services code. Both code bases were audited initially with further differential
reviews upon new revisions of the code. The source materials consist of:

• The public documentation audit
• The Seedvests services repository
• Multiple versions of an architecture diagram provided to the audit team.
• Seedvests open source repository

Furthermore, the audit explicitly excluded:

• DevOps, infrastructure, and network architecture
• Technical leadership
• Applicability for business use-cases
• Hiring

Considerations
• The system currently assumes a fixed number of nodes (N). We have reviewed the code,

using this assumption. We did not review the code on the basis that this assumption
would soon change.

• We have assumed that blob storage will only store small blobs.
• After fixes, many previously identified issues have been resolved. For brevity, those issues

are not included in this report.

Legend

This report classes findings into three categories:

• Yellow flag Potential problem without a clear or immediate exploit
• Red flag Confirmed issue which should be addressed immediately
• Green flag Aspect of the project demonstrating best practices

This report does not include previously resolved findings. Instead, we list unresolved and
partially resolved flags that comment about production code.

https://www.hedera.com/hh-whitepaper-v2.0-17Sep19.pdf
https://www.hedera.com/hh-whitepaper-v2.0-17Sep19.pdf

Page 5 of 16

Executive Summary

This report contains 0 red flag issues, 5 yellow flag issues, and 0 green flag issues. These issues
remain partially resolved or unresolved at the time of writing.

Page 6 of 16

Unresolved and Partially Resolved Findings
This section lists all partially resolved and unresolved findings.

Page 7 of 16

Yellow flag: Task Queue interactions

Impact

Ungracefully handled failures can lead to degraded behavior when interacting with the
Task Queue.

Situation

Part 1

Inside saveSignedStateToDisk:

boolean accepted = taskQueue.offer(new FileManagerTask(

 FileManagerOperation.WRITE,
 signedState,
 signedState.getLastRoundReceived(),
 snapshotTask,
 taskDesc));

1. The expression taskQueue.offer() returns a boolean indicating whether it can write to the
queue or whether the queue is full.

2. If the queue is full, it doesn’t retry in this function, but logs the event.
3. It returns the boolean (false) to the caller to indicate that the queue is full.

If the task failed, the caller of this function won’t be made aware of it or be able to react to it.

Part 2

Meanwhile, in run, we have:

 while (true) {
 try {

 FileManagerTask task = taskQueue.take();
 ... run the task ...

 } catch (Exception e) {
 ... logging here ...

 }
 }

If running the task fails, such as writeSignedStateToDisk, an exception is caught, logged, but not
reported back anywhere. Then we simply continue in the loop processing more tasks.

This seems like it could create an inconsistent state if any other code depends on that write
succeeding.

https://github.com/hashgraph/swirlds-open-review/tree/c31f2d1c53a0985fb5cd8475b61bb9cd8a071b25
https://github.com/hashgraph/swirlds-open-review/blob/c31f2d1c53a0985fb5cd8475b61bb9cd8a071b25/swirlds-platform-core/src/main/java/com/swirlds/platform/SignedStateFileManager.java#L386
https://github.com/hashgraph/swirlds-open-review/blob/c31f2d1c53a0985fb5cd8475b61bb9cd8a071b25/swirlds-platform-core/src/main/java/com/swirlds/platform/SignedStateFileManager.java#L83

Page 8 of 16

Recommendation

Some possible approaches to these issues:

• If justified, include a written explanation for ignoring failures (e.g., explaining why losing
these state updates is acceptable).

• Implement retrying logic, failing after N attempts.
• If writing to disk fails, it’s likely that there is a system failure occurring, or perhaps a

permissions issue. In all cases, the software probably should not continue and instead
should retreat up the call stack, performing any necessary cleanup.

Exception handling in asynchronous and concurrent programs is one of the more difficult
scenarios to debug when errors occur. We hope that writing defensively to anticipate such issues
can save substantial time later.

Page 9 of 16

Yellow flag: Deprecated code

Impact

No immediate impact. This audit note discusses a code maintainability improvement.

Situation

The project contains several classes and methods marked as @Deprecated:

• the class com.seeds.platform.Venture
• the class com.seeds.platform.Hash
• many methods of the class com.seeds.platform.Utilities
• and others

According to the Javadoc of @Deprecated it has the following meaning:

A program element annotated @Deprecated is one that programmers are discouraged from using, typically
because it is dangerous, or because a better alternative exists.

As a result, Maven produces many warnings when building the project. The attached text file
deprecations.txt lists some of these warnings.

Problem

Extensive use of @Deprecated reduces the visibility of related warnings and contradicts the idea
of marking definitions as deprecated. Furthermore, having many ignored deprecation warnings
could lead to other important warnings from the compiler being ignored.

Suggestions

We advise making proper use of the @Deprecated annotation: either add it less frequently or/and
migrate the code currently using deprecated definitions to use better alternatives.

Resolution

The Swirlds team communicated:

• The com.swirlds.platform.Crypto and com.swirlds.platform.Hash, which involve deprecated code,
are interrelated and will be addressed in future refactors.

• Due to the recent integration of the new Merkle reconnect logic that is waiting for
deployment, the deprecated copyFrom methods will be removed in the future.

https://github.com/hashgraph/swirlds-open-review/tree/c31f2d1c53a0985fb5cd8475b61bb9cd8a071b25
https://docs.oracle.com/javase/8/docs/api/java/lang/Deprecated.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Deprecated.html

Page 10 of 16

Yellow flag: Collection of minor code improvements

Impact

No direct impact. We make several suggestions to improve code examples with no impact on the
code behavior.

Issue

Our suggestions for minor improvements are:

1. The FCSerializer defines markers that are written during serialization and used to distinguish
between data areas while deserializing:

/**
* Start delimiter for leaf keys
*/

private static final int KEY_S = 1_801_812_339; // 'k', 'e', 'y', 's'

/**
* End delimiter for leaf keys
*/

private static final int KEY_E = 1_801_812_325; // 'k', 'e', 'y', 's'

/**
* Start delimiter for leaf values
*/

private static final int VALUE_S = 1_986_096_243; // 'v', 'a', 'l', 's'

/**
* End delimiter for leaf values
*/

private static final int VALUE_E = 1_986_096_229; // 'v', 'a', 'l', 's'

Comments look to be incorrect and could be interpreted as e.g. KEY_S and KEY_E have the
same value (corresponding to 'k', 'e', 'y', 's'). We suggest fixing the comments.

2. This is a snippet from Network.java

static String[] getOwnAddresses2() {
 if (ownAddresses == null)
 try {

 ownAddresses = computeOwnAddresses();
 } catch (SocketException e) {

 log.error(LogMarkers.LOGM_EXCEPTION, "", e);
 }

https://github.com/hashgraph/swirlds-open-review/tree/c31f2d1c53a0985fb5cd8475b61bb9cd8a071b25
https://github.com/hashgraph/swirlds-open-review/blob/c31f2d1c53a0985fb5cd8475b61bb9cd8a071b25/swirlds-fcmap/src/main/java/com/swirlds/fcmap/internal/FCSerializer.java#L41-L59
https://github.com/hashgraph/swirlds-open-review/blob/c31f2d1c53a0985fb5cd8475b61bb9cd8a071b25/swirlds-fcmap/src/main/java/com/swirlds/fcmap/internal/FCSerializer.java#L41-L59

Page 11 of 16

 return addresses;
}

Here, computeOwnAddress() contains the side effect of updating the class variable addresses.
This side effect should be avoided or made explicit.

3. addDeserializedChildren() can be named set* instead of add* because it sets children in the
range [0,children.size()-1], which makes it a set or replace operation instead of add.

4. In the method round a call to parentRound(x) is not necessary as it practically equals to rsp or
rop (ifs before that line exclude cases when they are not equal).

5. This function in SyncConnection.java

static boolean connection(SyncConnection syncConnection) {
 return syncConnection != null && syncConnection.connected();
}

could be renamed to isConnected or hasConnection.

6. The SyncManager exposes some functions that are called when something needs to be
reported to the SyncManager. We suggest using the function naming convention report*
consistently. Currently, there is:

/**
* Notifies the sync manager that there was a succesful sync
*/
void successfulSync() {
 ...
}

/**
* Notify the sync manager that a node has reported that they don't have events we need. This mean
s we have probably
* fallen behind and will need to reconnect
*
* @param id
* the id of the node who says we have fallen behind
*/
synchronized void reportFallenBehind(NodeId id) {
 ...
}

Using reportSuccessfulSync() as a name for the first function aligns the function names
better.

7. The Marshal.java class does not seem required. Settings.java can be used directly instead.

8. The empty abstract class SubSetting.java can be removed or explained in comments.

https://github.com/hashgraph/swirlds-open-review/blob/c31f2d1c53a0985fb5cd8475b61bb9cd8a071b25/swirlds-common/src/main/java/com/swirlds/common/merkle/MerkleInternal.java#L124-L136
https://github.com/hashgraph/swirlds-open-review/blob/c31f2d1c53a0985fb5cd8475b61bb9cd8a071b25/swirlds-platform-core/src/main/java/com/swirlds/platform/ConsensusImpl.java#L1510
https://github.com/hashgraph/swirlds-open-review/blob/c31f2d1c53a0985fb5cd8475b61bb9cd8a071b25/swirlds-platform-core/src/main/java/com/swirlds/platform/SyncConnection.java#L398-L400
https://github.com/hashgraph/swirlds-open-review/blob/c31f2d1c53a0985fb5cd8475b61bb9cd8a071b25/swirlds-platform-core/src/main/java/com/swirlds/platform/SyncConnection.java#L398-L400
https://github.com/hashgraph/swirlds-open-review/blob/c31f2d1c53a0985fb5cd8475b61bb9cd8a071b25/swirlds-platform-core/src/main/java/com/swirlds/platform/SyncManager.java#L366-L398
https://github.com/hashgraph/swirlds-open-review/blob/c31f2d1c53a0985fb5cd8475b61bb9cd8a071b25/swirlds-platform-core/src/main/java/com/swirlds/platform/SyncManager.java#L366-L398
https://github.com/hashgraph/swirlds-open-review/blob/c31f2d1c53a0985fb5cd8475b61bb9cd8a071b25/swirlds-platform-core/src/main/java/com/swirlds/platform/Marshal.java
https://github.com/hashgraph/swirlds-open-review/blob/c31f2d1c53a0985fb5cd8475b61bb9cd8a071b25/swirlds-platform-core/src/main/java/com/swirlds/platform/internal/SubSetting.java
https://github.com/hashgraph/swirlds-open-review/blob/c31f2d1c53a0985fb5cd8475b61bb9cd8a071b25/swirlds-platform-core/src/main/java/com/swirlds/platform/internal/SubSetting.java

Page 12 of 16

Yellow flag: Outdated Java version

Impact

Using an unsupported Java version could result in missing important patches and fixes. This
could compromise the Swirlds platform.

Situation

The project’s root pom.xml contains the following:

<maven.compiler.source>12</maven.compiler.source>
<maven.compiler.target>12</maven.compiler.target>

The current code base uses Java 12 for the source and target versions. According to the page
Oracle Java SE Support the current non-LTS version of Java is 14 (2 versions higher than the
version 12 currently used).

Support for JDK version 12 ended in September 2019. Newer versions have been released since -
with non-LTS versions released every six months.

Suggestions

If the Swirlds platform team has elected to use a non-LTS Java version, then we advise adding a
workflow which periodically ensures timely migrations to newer non-LTS Java versions.
Otherwise, we recommend standardizing on LTS Java versions.

Resolution

The Swirlds team added dual builds in their CI workflows, which builds the projects in JDK 12 and
14. Generally, this approach allows faster migrations to more recent Java versions in the future.

https://github.com/hashgraph/swirlds-open-review/tree/c31f2d1c53a0985fb5cd8475b61bb9cd8a071b25
https://www.oracle.com/java/technologies/java-se-support-roadmap.html

Page 13 of 16

Yellow flag: Replace custom code with libraries

Impact

Increased risk to bugs in custom code, which can be replaced with battle-tested libraries.

Issue

There are a few places in the code-base where algorithms are implemented by custom logic
instead of using libraries:

1. This includes two places where low-level code is used to parse .txt files:

a. Parsing the settings.txt file.
b. Parsing the config.txt file.

In both examples, a library can replace the low-level code. We recommend using a widely
used descriptive language, e.g. YAML, for setting and config files, which can be parsed by
corresponding libraries, e.g. snakeYaml, eoYaml, or yamlBeans. Alternatively, CSV format
and a CSV-parsing library could be considered. This provides the additional benefit that the
parsed files can be easily validated too. For example, currently the Settings.java code only
contains one simple validation in the code.

2. Parsing command line arguments is currently performed using custom low-level code,
which trims and lowercases a string for example. A CLI library, e.g. picocli, can be used to
increase the maintainability of the code, while reducing error-proneness.

https://github.com/hashgraph/swirlds-open-review/tree/c31f2d1c53a0985fb5cd8475b61bb9cd8a071b25
https://github.com/hashgraph/swirlds-open-review/blob/c31f2d1c53a0985fb5cd8475b61bb9cd8a071b25/swirlds-platform-core/src/main/java/com/swirlds/platform/Settings.java#L529-L557
https://github.com/hashgraph/swirlds-open-review/blob/c31f2d1c53a0985fb5cd8475b61bb9cd8a071b25/swirlds-platform-core/src/main/java/com/swirlds/platform/Browser.java#L495-L514
https://bitbucket.org/asomov/snakeyaml/src/master/
https://github.com/decorators-squad/eo-yaml
https://github.com/EsotericSoftware/yamlbeans
https://github.com/hashgraph/swirlds-open-review/blob/c31f2d1c53a0985fb5cd8475b61bb9cd8a071b25/swirlds-platform-core/src/main/java/com/swirlds/platform/Settings.java#L566
https://github.com/hashgraph/swirlds-open-review/blob/c31f2d1c53a0985fb5cd8475b61bb9cd8a071b25/swirlds-platform-core/src/main/java/com/swirlds/platform/Browser.java#L205
https://picocli.info/

Page 14 of 16

Yellow flag: Shellcheck

Impact

No direct impact. Numerous shell scripts do not follow best practices, which may cause incorrect
behaviour.

Situation
As part of the audit, the tool shellcheck was run to spot shortcomings in the shell scripts of the
services-hedera and swirlds-open-review repositories. shellcheck provides a code for each finding of
the form SCXXXX, which we are using in this issue as well. This issue outlines found issues with
error-severity.

Issue
The following analysis was generated with the tool shellcheck and its invocation: shellcheck -S
error $(find . -name '*.sh'). For completeness, the findings include occurrences of code that is out
of scope, e.g. the /sdk directory.

Seedvests-services:

11 issues with error-severity were found, which fall into five distinct error codes:

SC1128: The shebang must be on the first line. Delete blanks and move comments.
SC2068: Double quote array expansions to avoid re-splitting elements.
SC2096: On most OS, shebangs can only specify a single parameter.
SC2145: Argument mixes string and array. Use * or separate argument.
SC2148: Tips depend on target shell and yours is unknown. Add a shebang or a 'shell' directive.
SC2199: Arrays implicitly concatenate in [[]]. Use a loop (or explicit * instead of @).

The full shellcheck output can be found in the attached asset shellcheck-services.txt.

swirlds-open-review:

In the incremental audit, only one issue with error-severity was found in commit
1c46f8d30723a833d59b8bc2df1d069a1281ae60:

In ./sdk/data/keys/generate.sh line 5:
if [[-z "$@"]]; then

 ^--^ SC2199: Arrays implicitly concatenate in [[]]. Use a loop (or explicit * instead of @).

https://github.com/hashgraph/hedera-services/tree/fccbbe7ed911628d73ff8ab07981246fac5639cf
https://github.com/hashgraph/swirlds-open-review/commit/1c46f8d30723a833d59b8bc2df1d069a1281ae60
https://github.com/koalaman/shellcheck

Page 15 of 16

Recommendation

Since the above reports are already filtered by error-severity, we suggest fixing all of these.
Furthermore, our recommendation is to integrate shellchecks into CI workflows so that
dangerous scripting practices can be spotted and addressed consistently (and as early as
possible).

Resolution
The reported finding in swirlds-open-review has been fixed.

https://github.com/hashgraph/swirlds-open-review/commit/2541f63b026bfcab523ef53b117404793b1102af
https://github.com/hashgraph/swirlds-open-review/commit/2541f63b026bfcab523ef53b117404793b1102af

Page 16 of 16

Yellow flag: Thread Safety issues

Impact
Various thread safety issues could lead to undetermined correctness issues.

Problem

The static analysis tool Infer reports numerous thread safety warnings which are attached in
the asset infer-thread-safety-warnings.txt.

Suggestions

The above referenced issues should be fixed. We recommend running the Infer tool as part of
the CI so that these classes of error are caught sooner.

Resolution

The Infer tool has been integrated in internal CI workflows to capture the issues earlier and fix
them. The reported warnings remain unresolved.

https://github.com/hashgraph/swirlds-open-review/commit/c31f2d1c53a0985fb5cd8475b61bb9cd8a071b25

	Prologue
	Disclaimer
	Source Material
	Considerations
	Legend
	Executive Summary

	Unresolved and Partially Resolved Findings
	Yellow flag: Task Queue interactions
	Impact
	Situation
	Part 1
	Part 2

	Recommendation

	Yellow flag: Deprecated code
	Impact
	Situation
	Problem
	Suggestions
	Resolution

	Yellow flag: Collection of minor code improvements
	Impact
	Issue

	Yellow flag: Outdated Java version
	Impact
	Situation
	Suggestions
	Resolution

	Yellow flag: Replace custom code with libraries
	Impact
	Issue

	Yellow flag: Shellcheck
	Impact
	Situation
	Issue
	Recommendation
	Resolution

	Yellow flag: Thread Safety issues
	Impact
	Problem
	Suggestions
	Resolution

